Чёрные дыры во Вселенной
Меню сайта
Категории каталога
Чёрные дыры [32]
Тёмная материя [7]
Вселенная [9]


Главная » Статьи » Чёрные дыры

Геометрия чёрных и белых дыр часть 1
Дыра
Открытие квантового испарения черных дыр произвело сенсацию, правда, в основном среди теоретиков. На практике черные дыры продолжали оставаться такими же ненаблюдаемыми, как и раньше. Объясняется это тем, что черные дыры являются неустойчивыми объектами и при своем образовании попросту исчезают из нашей Вселенной. Другое дело, что в области виртуальной геометрии вакуумные частицы могут резонировать также, как и на обычной сфере Шварцшильда. Но этот резонанс никак не связан с гравитационным коллапсом звезд. С гораздо большим основанием его можно отнести к обычным квантовым скачкам реальных элементарных частиц из одной точки пространства в другую. А вот выбрасывание остатков вещества коллапсирующей звезды в другие вселенные действительно можно рассматривать как квантовое испарение черной дыры. Но такое испарение не имеет никакого отношения к резонансу вакуумных частиц.

Во-вторых, утверждение Маркова о наличии у фридмонов конкретного внутреннего объема нельзя считать ошибочным еще и потому, что в качестве фридмонов можно расматривать все вселенные многомерного времени. Собственно говоря, мы уже упоминали об этом выше, но тогда мы упоминали об этом в связи с абсолютным дефектом массы заключенной внутри фридмонов материи. Такая точка зрения автоматически исключает устойчивость фридмонов. Но структура фридмонов может быть и устойчивой, если в качестве таковой рассматривать структуру вселенных многомерного времени. (Не то вещество, которое выбрасывается в них при гравитационном коллапсе звезд нашей Вселенной, а вещество самих этих вселенных). Точнее, об этой структуре нельзя говорить, что она устойчива или неустойчива, поскольку друг от друга вселенные многомерного времени отделены областью виртуальной геометрии. Понятия устойчивости и неустойчивости основываются на наших обычных временных представлениях, которые неприменимы в области виртуальной геометрии.

Первое, что следует из такого толкования фридмонов Маркова, - это то, что в области виртуальной геометрии вселенные многомерного времени неотличимы от элементарных частиц. Хотя бы потому, что в этой области относительны их пространственные и временные размеры. А главное потому, что в ней относительны свойства вселенных и элементарных частиц. Дело в том, что обособленность вселенных многомерного времени в этой области может быть не только полной, но и частичной, что позволяет наблюдать их во внутреннем пространстве какой-то одной вселенной. Просто в том "месте", где эти вселенные связаны друг с другом, виртуальная геометрия этих "мест" частично утрачивает неопределенные метрические свойства, а значит и допускает в какой-то мере обычное наблюдение. Именно такие "места" с частично нарушенной виртуальной геометрией и можно отождествить с горловинами Маркова, связывающими разные фридмоны. При этом свойства данных "мест" могут быть подобраны так, что во внутренем пространстве каждой вселенной остальные вселенные многомерного времени будут выглядеть как обычные элементарные частицы.

Что касается проникновения через элементарные частицы из нашей Вселенной в другие вселенные многомерного времени, то оно ничем принципиально не отличается от выбрасывания в эти вселенные вещества звезды, коллапсирующей в нашей Вселенной. По этой причине Марков зря полагал, что достичь горловины между нашей и другой вселенной наблюдатель может только за бесконечно большой отрезок времени. В любой системе отсчета - как в его собственной, так и в системе отсчета внешнего наблюдателя - этот переход занимает такой же короткий отрезок времени, как и заключительная стадия гравитационного коллапса звезд. Другой вопрос, что именно Марков подразумевал под продвижением этого наблюдателя от центра нашей Вселенной, позволяющим ему проникнуть в горловину между нашей и другой вселенной?

Мы говорили, что никакой обычной границы между внешним и внутренним пространствами элементарных частиц, подобной внешней форме макроскопических тел, не существует. Различие между фундаментальными константами и законами сохранения нашей Вселенной - это и есть такая граница. В том смысле, в каком это различие существует, мы находимся во внешнем пространстве элементарных частиц или, попросту, внутри нашей Вселенной. И наоборот, в том смысле, в каком это различие исчезает, мы переходим на границу между внешним и внутренним пространствами элементарных частиц или, попросту, в область виртуальной геометрии. Именно эта относительность фундаментальных констант и законов сохранения и является главным условием проникновения через элементарные частицы из нашей Вселенной в другие вселенные многомерного времени.

Относительность фундаментальных констант и законов сохранения нашей Вселенной - это такое же свойство виртуальной геометрии, как и относительность точки и бесконечности, мгновения и вечности, пространственных и временных величин. Относительность фундаментальных констант и законов сохранения - это комплексная относительность всех физических и геометрических понятий, включая те, которые мы упоминали выше. Поэтому для того, чтобы проникнуть через элементарные частицы из нашей Вселенной в другие вселенные, нужно искусственным (!) образом создать в своей системе отсчета относительность фундаментальных констант и законов сохранения нашей Вселенной. В гравитационном коллапсе сверхмассивных звезд такая относительность возникает естественным образом. (Отсюда же, кстати, следует, что при любом излучении гравитационных волн изменяются фундаментальные константы и законы сохранения нашей Вселенной).

В связи с этим можно упомянуть о так называемом "антропном принципе". Специфика этого принципа заключается в том, что он был специально сформулирован для ответа на вопрос, почему из бесконечного разнообразия условий, которые могли бы существовать во Вселенной, реализовались такие редкие условия, как существование жизни на Земле. Обычно в физике наблюдателя не принимают во внимание, полагая его чем-то вроде постороннего зеваки. Дикке и Прайс подвергли сомнению это предположение, полагая, что строение физического мира неотделимо от его наблюдателя. Они утверждают, что существует некий антропный принцип, осуществляющий невероятно тонкую подстройку Вселенной для возникновения в ней этого наблюдателя.

Основное возражение против антропного принципа заключается в том, что он не имеет физического объяснения. Чрезвычайно соблазнительно в данном случае привлечь законы квантовой механики, в которой результат наблюдения зависит от того, как поведет себя сам наблюдатель. Но давно уже доказано, что перенос законов квантовой механики на наше обычное макроскопическое окружение приводит к парадоксам (шредингеровской кошки, многолистной Вселенной Эверетта, неравенствам Белла, ЭПР-парадоксу и др.), которые никто пока что не смог разрешить. Поэтому вопрос о справедливости антропного принципа остается сегодня открытым.

Между тем, физическое объяснение антропного принципа не содержит в себе ничего сложного. Он скорее является психологическим курьезом, нежели научной проблемой. В основе антропного принципа лежит субъективная абсолютизация нами фундаментальных констант и законов сохранения нашей Вселенной, которые могут изменяться только в фазовых переходах вещества, в том числе, в гравитационном коллапсе звезд. Для нас, как живых организмов, единственной приемлемой формой фазовых переходов являются наше рождение и биологический рост. Все остальные формы этих переходов - травмы, болезни и смерть - мы отвергаем, поскольку жизнь для нас имеет абсолютную ценность. Именно в такой абсолютизации жизни и заключается физический смысл антропного принципа, допускающего в нашей Вселенной только такие фундаментальные константы и законы сохранения, которые обеспечивают существование этой жизни.

Чтобы сделать это утверждение более наглядным, представим себе ситуацию, когда человек падает в центр черной дыры. Как уже говорилось, особенность этого процесса заключается в том, что в нем стирается различие между фундаментальными константами и законами сохранения нашей Вселенной, что делает относительными ее размеры и размеры элементарных частиц. В результате перед человеком открывается бесконечное множество космических горловин - входов в другие вселенные, сдвинутых друг относительно друга в многомерном времени. Каждая из этих вселенных имеет свой набор фундаментальных констант и законов сохранения, и если человек не может по своему желанию изменять свой собственный набор фундаментальных констант и законов сохранения, то его тело распадается на элементарные частицы и распределяется по разным космическим горловинам. Или превращается в гравитационные волны и застревает в области виртуальной геометрии. В любом случае человек, как биологический организм, перестает существовать.

Можно, конечно, придумать какую-нибудь капсулу, предотвращающую распад тела человека в гравитационном коллапсе звезды, или самому человеку натренировать свое тело так, чтобы оно сохраняло свою структуру при любом наборе фундаментальных констант и законов сохранения. Но дело в данном случае не в этом, а в том, что само движение нашей Вселенной во времени представляет собой непрерывное изменение ее набора фундаментальных констант и законов сохранения. Точнее, наше движение во времени с моментом настоящего представляет собой область неизменности фундаментальных констант и законов сохранения нашей Вселенной. В нашем прошлом и будущем эти константы и законы имеют другое значение и другую форму, но именно в прошлом и будущем, которые уже сбылись или только сбудутся, а не в том моменте настоящего, который был или будет. Эти понятия ни в коем случае нельзя путать друг с другом, поскольку они имеют разный физический смысл. Изменение фундаментальных констант и законов сохранения - это способ "одновременного" реального существования нашего прошлого, настоящего и будущего, а неизменность фундаментальных констант и законов сохранения - это способ реального существования только нашего настоящего, исключающий реальное существование нашего прошлого и будущего.

Фактором, изменяющим фундаментальные константы и законы сохранения нашей Вселенной, являются любые фазовые переходы вещества, в том числе гравитационный коллапс сверхмассивных звезд, а фактором, поддерживающим обычное значение и обычную форму этих констант и законов - гравитационные волны, мгновенно охватывающие весь объем пространства нашей Вселенной и оказывающие влияние на фазовую структуру вещества в любом ее уголке. Благодаря такой вездесущности, гравитационные волны поддерживают динамическое равновесие всех фазовых переходов вещества в нашей Вселенной, которое и соответствует ее набору фундаментальных констант и законов сохранения. Наша жизнь - это одна из форм такого равновесия, а наша смерть - это одна из форм нарушения данного равновесия, ничем принципиально не отличающаяся от гравитационного коллапса звезд. И пока мы не можем по своему желанию изменять фундаментальные константы и законы сохранения нашей Вселенной, до тех пор мы будем оставаться привязанными к ее настоящему. По этой же причине нам не стоит без оглядки бросаться в черные дыры, пытаясь проникнуть в другие вселенные.

Аналогичную природу имеет и проблема так называемых "больших чисел". Дело в том, что в 1937 году Дирак обнаружил удивительную взаимосвязь между физическими величинами, которыми описываются космологические явления, и величинами, которыми описываются явления в микромире. При сопоставлении этих величин с удивительным постоянством фигурировало одно и то же число - 1040. Проблему таких совпадений сегодня называют "проблемой больших чисел". Она указывает на существование таких взаимосвязей в природе, которые пока что не известны науке. Попытку объяснить эти взаимосвязи и предпринял Дирак.

Отправной точкой ему послужило отношение возраста нашей Вселенной к атомной единице времени. Возраст нашей Вселенной со временем увеличивается, тогда как атомное время остается неизменным. Это означает, что соответствующее им "большое число" также изменяется со временем. Если предположить, что связь между полученными разными способами "большими числами" не случайна, то все они должны изменяться согласованно. Так Дирак пришел к выводу, что не все фундаментальные константы нашей Вселенной сохраняют свое значение во времени.

В первую очередь подозрение пало на гравитационную константу, сохранение которой в "больших числах" требовало изменения массы и электрического заряда частиц. Последние две возможности Дирак отбросил, поскольку постоянство массы и электрического заряда элементарных частиц подтверждалось неоднократно в самых различных экспериментах. Поэтому он решил, что изменяется, причем обратно пропорционально возрасту Вселенной, именно гравитационная константа.

Однако изменение гравитационной константы имело бы значительные астрономические и геологические последствия, поскольку типичная масса звезд в современной Вселенной попадает в узкий интервал между голубыми гигантами и красными карликами из-за конкретного соотношения между константами гравитационного и электромагнитного взаимодействий. Если бы гравитационная константа была больше, то все звезды в современной Вселенной были бы голубыми гигантами, а сама Вселенная была бы неустойчивой и сколлапсировала задолго до современной эпохи. С другой стороны, если бы гравитационная константа была меньше, то радиус Земли в наше время был бы на несколько сотен километров больше, а сама Земля находилась бы ближе к Солнцу. При этом температура Солнца была бы выше, а значит была бы выше и температура на поверхности Земли. Как показывают расчеты, Мировой океан в докембрийский период при этом кипел бы, и никакая жизнь в нем не могла бы зародиться. Эти соображения говорили против гипотезы Дирака, а для экспериментальной ее проверки точности современных измерительных приборов оказалось недостаточно.

Данная проблема как нельзя лучше отражает непонимание современной физикой природы времени. "Большие числа" - это количественное выражение динамического равновесия всех фазовых переходов вещества в нашей Вселенной, стабилизирующего ее набор фундаментальных констант и законов сохранения; это тот же комплекс физических и геометрических понятий, только в данном случае он характеризует свойства не виртуальной геометрии, как относительность фундаментальных констант и законов сохранения, а свойства сегодняшней геометрии Вселенной. "Большие числа" действительно могут изменяться со временем, причем даже более радикально, нежели предполагал Дирак. Но при этом в них будет изменяться не одна лишь гравитационная константа, а все фундаментальные константы в комплексе; и не только они, но и все законы сохранения нашей Вселенной.

Но даже не в этом заключается главная ошибка Дирака, а в том, что он допустил изменение гравитационной константы и, соответственно, "больших чисел" в настоящем нашей Вселенной. "Большие числа" могут изменяться только в прошлом и будущем нашей Вселенной, которые уже сбылись или только сбудутся, но ни в коем случае не в моменте настоящего, который был, есть или будет. В настоящем нашей Вселенной эти числа строго сохраняются, что и подтвердили эксперименты по проверке гипотезы Дирака. А вот если мы сдвинемся относительно нашего настоящего в прошлое или будущее Вселенной, то действительно обнаружим изменение "больших чисел". При этом мы можем обнаружить такой набор фундаментальных констант и законов сохранения, который действительно приводит к быстрому коллапсу Вселенной или к невозможности зарождения жизни на Земле. В этом смысле указанные соображения говорили не против, а за гипотезу Дирака.

Но сразу же следует оговориться, что не всякий сдвиг во времени относительно нашего настоящего порождает такой набор фундаментальных констант и законов сохранения, который делает невозможным существование жизни. Во-первых, возможны и такие формы жизни, которые могут существовать в упомянутых условиях. Наши рассуждения об условиях жизни основываются на условиях нашей собственной жизни. Изменяя (мысленно) какое-то одно из этих условий, например, ту же гравитационную константу, мы видим, что не сможем существовать в таких условиях. А не зная других форм жизни, мы предполагаем, что в них вообще никакая жизнь не сможет существовать. И вполне возможно, что так оно и есть. Потому что любые условия жизни определяются не одной единственной константой, а полноценным набором этих констант и законов сохранения. При нашем наборе может существовать только наша форма жизни, при других наборах - другие формы.

Во-вторых, в системе отсчета многомерного времени наборы фундаментальных констант и законов сохранения относительны. Это означает, что если из нашей Вселенной мы переместимся в другую вселенную многомерного времени и обнаружим в ней тот же набор фундаментальных констант и законов сохранения, что и в нашей бывшей Вселенной, то сможем жить в ней не хуже, чем в нашей. В системе отсчета нашей бывшей Вселенной этот набор выглядел совершенно иначе и был, по нашему мнению, не совместим с жизнью. Точно также в системе отсчета нашей новой вселенной будет выглядеть набор фундаментальных констант и законов сохранения нашей бывшей Вселенной. Это непосредственно следует из свойств виртуальной геометрии, разграничивающей вселенные многомерного времени, а точнее, их временные линии. Все ограничения на условия нашей жизни ограничиваются нашей собственной временной линией, в которой мы можем существовать только в моменте настоящего.

Еще одна ошибка Дирака заключается в предположении, что возраст нашей Вселенной изменяется со временем. Понятие возраста Вселенной - это субъективное понятие, отражающее наш уровень знаний о ее эволюции. Объективным это понятие является лишь постольку, поскольку опирается на те фундаментальные константы и законы сохранения, которыми оперирует современная физика. Но это свидетельствует лишь о сохранении "больших чисел", в том числе возраста нашей Вселенной, при ее движении во времени с моментом настоящего. Звучит это, конечно, парадоксально, но только потому, что мы не учитываем физическую природу времени. И, прежде всего то, что не существует прошлого в том виде, в каком мы его когда-то пережили, и наоборот, не существует будущего в том виде, в каком мы его сегодня представляем. Это непосредственно следует из того, что в прошлом и будущем наборы фундаментальных констант и законов сохранения отличаются от сегодняшнего набора. Современная физика допускает изменение этого набора в далеком прошлом нашей Вселенной, когда она представляла собой Единое поле, а также в далеком будущем, если ее сегодняшнее расширение сменится сжатием. Именно на этом допущении и основываются современные представления о возрасте Вселенной. Но эти представления являются ошибочными, поскольку радикальное изменение сегодняшнего набора фундаментальных констант и законов сохранения можно получить, сдвинувшись сравнительно недалеко в прошлое или будущее нашей Вселенной относительно ее настоящего.

Но отложим пока что эту проблему и вернемся к геометрии черных дыр. В 1960 году Крускал разработал особую систему координат, меняющую местами пространственные и временные величины внутри сферы Шварцшильда. Поводом для этого послужили те противоречия, которые возникают в теории черных дыр, если применять к ним обычные системы координат. В частности, если совмещать в них системы отсчета внешнего и внутреннего наблюдателей, то тогда мы получим, что в своей системе отсчета внешний наблюдатель увидит сразу двух внутренних наблюдателей - одного вне сферы Шварцшильда, сближающегося с ней бесконечно долго, а другого внутри этой сферы, движущегося вспять (!) во времени из бесконечно далекого будущего и исчезающего в сингулярности в тот момент, в который он ее достигает по своим собственным часам. Точнее, второго внутреннего наблюдателя внешний наблюдатель не увидит, а только рассчитает его движение внутри сферы Шварцшильда на основе теории черных дыр. И придет к выводу, что либо его расчеты никуда не годятся, либо в природе действительно существует двойник того внутреннего наблюдателя, которого он видит в настоящий момент.

Именно эти соображения и заставили в свое время Крускала разработать свою систему координат. Такие координаты позволяют представить движение внутреннего наблюдателя внутри сферы Шварцшильда не как движение вспять во времени, а как движение "поперек" времени. Достигается это за счет самой смены местами пространственных и временных величин на сфере Шварцшильда. С точки зрения внешнего наблюдателя, внутренний наблюдатель, после пересечения им сферы Шварцшильда, просто застывает во времени и, вместе с тем, продолжает сближаться с сингулярностью. Такая точка зрения полностью согласуется с тем, что самой сферы Шварцшильда внутренний наблюдатель достигает за бесконечно большое время, но никаких двойников у него при этом не возникает.

Другим достоинством координат Крускала является то, что они разрешили проблему так называемых "белых дыр". (Точнее, они представили эту проблему в менее противоречивой форме). Дело в том, что уравнения общей теории относительности симметричны во времени. Это означает, что если существует процесс, в котором внутренний наблюдатель падает в центр черной дыры, то должен также существовать процесс, в котором он вылетает из центра данной дыры. С точки зрения внешнего наблюдателя, это просто невозможно, поскольку из-под сферы Шварцшильда не может вырваться ни одна материя и ни одно излучение. После того, как Крускал предложил свою систему координат, стало ясно, что эти процессы соответствуют разным физическим объектам. Поэтому если внутренний наблюдатель падает в черную дыру, то после пересечения им сферы Шварцшильда, он навсегда исчезает из нашей Вселенной, не может вылететь из-под этой сферы обратно в нашу Вселенную. Но в последней могут существовать и такие объекты, в которых внутренний наблюдатель (и вообще, любая материя и любое излучение) может вылетать из-под сферы Шварцшильда, но не может пересекать ее в обратном направлении. Такие экзотические объекты называются сегодня "белыми дырами".
 
Категория: Чёрные дыры | Добавил: blackhole (13.12.2008)
Просмотров: 2190 | Комментарии: 3 | Рейтинг: 0.0/0 |
Всего комментариев: 0

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


Форма входа
Поиск
Партнёры сайта
Rambler's Top100
Яндекс цитированияКаталог@Mail.ru - каталог ресурсов интернет



Copyright MyCorp © 2024Хостинг от uCoz